Role of Biomarkers and Quantitative Models in Drug Development

Yaning Wang, Ph.D. Director (acting) Division of Pharmacometrics Office of Clinical Pharmacology OTS/CDER/FDA

Disclaimer: My remarks today do not necessarily reflect the official views of the FDA

Outline

- Motivation for using biomarkers and quantitative models in drug development
- Case studies
- Summary

General Dose Selection Strategy

- Safety driven
 - Maximum tolerated dose (MTD)
 - Unnecessarily high dose
 - Even efficacy not always optimal
- Efficacy driven
 - Mechanism based (receptor occupancy, target suppression, pathway biomarker response)
 - Trend for more disease areas

Biomarkers for Different Diseases

Disease	Biomarker	Clincal Endpoint
bone cancer or bone metastases from solid tumors	urinary N-telopeptide normalized to urinary creatinine (UNTx/Cr)	time to first on-study occurrence of a skeletal- related event [SRE], including fractures, radiation to bone, spinal cord compression and surgery to bone
cardiovascular disease	platelet aggregation inhibition	major adverse cardiovascular events (MACE): CV Death/myocardial infarction/stroke
lung cancer	tumor size	survival
osteoporosis	BMD, serum C-telopeptide	fracture
lupus	anti-dsDNA antibody	renal flare, Systemic Lupus Erythematosus Responder Index

Model-Based Drug Development

"The concept of <u>model-based drug</u> <u>development</u>, in which pharmaco-statistical models of drug efficacy and safety are developed from preclinical and available clinical data, offers an important approach to improving drug development knowledge management and development decision-making"

Adapted from Lewis B. Sheiner, "Learning vs Confirming in Clinical Drug Development", *Clin. Pharmacol. Ther.*, 1997, 61:275-291.

Case Studies

- Drug X
 - Biomarker, PK-biomarker-surrogate endpoint model, genomics, trial design, clinical trial simulation
- Drug Y
 - Biomarker, potency bridging, exposureefficacy/safety models, confounding, risk/benefit balance

Case 1: Drug X

- Treatment for a chronic disease
- Polymorphism in metabolic enzyme
 - a/a 20%
 a/b 50%
 Extensive metabolizers (EM's)
 - -b/b 30% Poor metabolizers (PM's)
- ↓ Biomarker (B) & Surrogate (S) levels
- Goal: How to manage a genotypic influence on drug clearance in dose selection for Phase III trial design

Modeling Strategy

- Pharmacokinetics (Drug X)
 - Phase 1 data for population PK model
 - Phase 2 data for model update
- Pharmacodynamics (Biomarker and Surrogate)
 - Model established using clinical trial data available to FDA from drugs in this class & other classes
 - Simultaneous modeling biomarker and surrogate
 - Models updated with Drug X data

Simulation Strategy & Assumptions

- Population PK model
 - Two-compartment model
 - Clearance dependent on genotype (a/a, a/b and b/b)
- Exposure-response model
 - Drug-Biomarker-Surrogate model
- Trial designs
 - Stratification by genotype
 - Titration by biomarker
- Inclusion criterion
 - Baseline Surrogate>70 and <100</p>
- Analysis
 - Response rate at week 26 (Surrogate reduction > 10)
- 100 clinical trial replicates

Titration by Biomarker (Parallel Dose, Titration at 12 wk, Placebo Control)

Dose mg/day

Summary of Case 1

- At week 26, higher response rates were achieved in stratification by genotype design than titration by biomarker design. But the difference is getting smaller at later weeks.
- BID regimens perform better than QD regimens, especially in EM population.
- High-dose safety data in PM is needed.
- Biomarker-Surrogate relationship can be applied to other drugs with similar mechanism of action.

Case 2: Drug Y

- A new oral anticoagulant under development for the prevention of stroke and systemic embolic (SE) events in patients with non-valvular atrial fibrillation
- Mechanism of action: direct thrombin inhibitor
- Warfarin (Vitamin-K antagonist)
 - Slow onset and offset of action
 - Narrow therapeutic index
 - DDI and food effect
- Reference/bridging drug: ximelagatran
 - Rejected by FDA in 2004, but approved for venous thromboembolism (VTE) following orthopaedic surgery (OS) in EU, but withdrawn by AZ in Feb 2006 due to liver toxicity

Key Issues

- Relative potency (relative to ximelagatran)
 - Less potent
 - 1:2 on anticoagulant effect
 - 1:3 on antithrombotic effect
 - Predictive power of biomarkers
- Exposure-response
 - Exposure-Stroke/SE
 - Confounding
 - Exposure-bleeding
 - Total vs major bleeding
- Risk/benefit balance to guide dose selection

Efficacy in SPORTIF III and V

III (open label, non-North America)

		Patient	Event rate	95% CI		
Treatment group	Events	years	(%/year)	Lower	Higher	p-value
Ximelagatran	40	2446	1.64	1.13	2.14	
Warfarin	56	2440	2.29	1.69	2.9	
Ximelagatran - warfarin			-0.66	-1.45	0.13	0.100

V (double blinded, North America)

		Patient	Event rate	95% CI		
Treatment group	Events	years	(%/year)	Lower	Higher	p-value
Ximelagatran	51	3160	1.61	1.17	2.06	
Warfarin	37	3186	1.16	0.79	1.54	
Ximelagatran - warfarin			0.45	-0.13	1.03	0.133

Confounded Exposure-Efficacy Ximelagatran

Prevalence of Stroke by Age and Sex

Exposure-Safety

- Similar confounding issue
- Total bleeding versus major bleeding
- The sponsor and FDA reached consistent conclusions
- Under-prediction for drug Y and model needs to be updated with new data

Summary of Case 2

- Week predictive power of the biomarker for efficacy
- A Bayesian approach was used to address the confounding issue
- Uncertainty related to exposure-efficacy relationship
 - Two doses in phase 3
- Major bleeding should be used to select dose(s)

Conclusion

- Biomarkers play an important role in drug development
- Quantitative models serve as a powerful tool to integrate information from multiple sources
- Clinical trial simulation should be routinely applied to optimize late phase trials

Acknowledgment

- David Orloff
- Todd Sahlroot
- Jaya Vaidyanathan
- Dong Yim
- Jenny Zheng
- Joga Gobburu
- Khin M U

- Norman L Stockbridge
- George Shashaty
- Kathy M Robie Suh
- Jialu Zhang
- Hsien Ming J Hung
- Marroum, Patrick J

Scientists from the two sponsors